Effect of Climate-Related Change in Vegetation on Leaf Litter Consumption and Energy Storage by Gammarus pulex from Continental or Mediterranean Populations
نویسندگان
چکیده
As a consequence of global warming, it is important to characterise the potential changes occurring for some functional processes through the intra-specific study of key species. Changes in species distribution, particularly when key or engineer species are affected, should contribute to global changes in ecosystem functioning. In this study, we examined the potential consequences induced by global warming on ecosystem functioning in term of organic matter recycling. We compared consumption of leaf litter by some shredder populations (Gammarus pulex) between five tree species inhabiting continental (i.e., the northern region of the Rhône River Valley) and/or Mediterranean (i.e., the southern region of the Rhône River Valley) conditions. To consider any potential adaptation of the gammarid population to vegetation in the same climate conditions, three populations of the key shredder Gammarus pulex from the northern region and three from the southern region of the Rhône River Valley were used. We experimentally compared the effects of the geographical origin of both the gammarid populations and the leaf litter species on the shredding activity and the physiological state of animals (through body triglyceride content). This study demonstrated that leaf toughness is more important than geographical origin for determining shredder leaf litter consumption. The overall consumption rate of the gammarid populations from the southern region of Rhône Valley was much higher than that of the populations from the northern region, but no clear differences between the origins of the leaf litter (i.e., continental vs. Mediterranean) were observed. The northwards shift of G. pulex populations adapted to warmer conditions might significantly modify organic matter recycling in continental streams. As gammarid populations can demonstrate local adaptations to certain leaf species as a trophic resource, changes in riparian vegetation associated with climate change might locally affect the leaf litter degradation process by this shredder.
منابع مشابه
Effects of Elevated CO2 on Litter Chemistry and Subsequent Invertebrate Detritivore Feeding Responses
Elevated atmospheric CO2 can change foliar tissue chemistry. This alters leaf litter palatability to macroinvertebrate detritivores with consequences for decomposition, nutrient turnover, and food-web structure. Currently there is no consensus on the link between CO2 enrichment, litter chemistry, and macroinvertebrate-mediated leaf decomposition. To identify any unifying mechanisms, we presente...
متن کاملMicrohabitats and canopy cover moderate high summer temperatures in a fragmented Mediterranean landscape
Extreme heat events will become more frequent under anthropogenic climate change, especially in Mediterranean ecosystems. Microhabitats can considerably moderate (buffer) the effects of extreme weather events and hence facilitate the persistence of some components of the biodiversity. We investigate the microclimatic moderation provided by two important microhabitats (cavities formed by the lea...
متن کاملImpacts of pesticides and natural stressors on leaf litter decomposition in agricultural streams.
Agricultural pesticides are known to significantly impact the composition of communities in stream ecosystems. Moreover, agricultural streams are often characterised by loss of physical habitat diversity which may impose additional stress resulting from suboptimal environmental conditions. We surveyed pesticide contamination and rates of leaf litter decomposition in 14 1st and 2nd order Danish ...
متن کاملIntegration of nitrogen cycle dynamics into the Integrated Science Assessment Model for the study of terrestrial ecosystem responses to global change
[1] A comprehensive model of terrestrial N dynamics has been developed and coupled with the geographically explicit terrestrial C cycle component of the Integrated Science Assessment Model (ISAM). The coupled C-N cycle model represents all the major processes in the N cycle and all major interactions between C and N that affect plant productivity and soil and litter decomposition. Observations ...
متن کاملGammarus pulex (L.) feeding bioassay--effects of parasitism.
Taylor et al. (1993) described a pollutant bioassay based upon a change in the rate at which Gammarus pulex (L.) consumes a novel food source (eggs of the brine shrimp Anemia salina) when the animals are stressed by exposure to a pollutant. The bioassay is rapid and non-destructive, and produces results with less variation than reported using conventional leaf-feeding bioassays. However, it is ...
متن کامل